Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- 가우스조던소거법
- 한국데이터산업진흥원
- 컴퓨터공학
- 선형회귀모델
- 중간고사
- LU분해
- 행렬식
- 선형대수학
- 컴공수학
- LU분해 알고리즘 구현
- 학점은행제
- determinant
- lte라우터
- 메가존아이티평생교육원
- 행렬식 파이썬
- 머신러닝
- 한국기술교육대학교
- 김영평생교육원
- 정규방정식
- 가우스조르당소거법
- 알고리즘
- 라이프니츠 공식
- 행렬식의 정의
- 여인수 전개
- 원격평생교육진흥원
- 정보처리기사 후기
- 학사
- 정보처리기사 기출
- 화웨이라우터
- LU분해 파이썬
Archives
- Today
- Total
목록가우스 소거법 행렬식 (1)
gyeo-ri.com
행렬식(Determinant) - 여인수 전개와 가우스 소거법을 이용한 방법
여인수 전개(Cofactor Expansion) 이전 포스팅에서 다룬 라이프니츠 공식은 행렬식의 정의를 바탕으로 계산하는 방법이지만, 행렬의 크기가 커질수록 연산시간이 크게 증가한다는 단점이 있다. 여인수 전개는 행렬식의 정의의 패턴을 이용하여 계산 과정을 보다 단순하게 정리한 방법 중 하나이다. 여인수란 특정 원소가 속한 행/열을 제외한 부분행렬의 행렬식을 구하고, 제외된 행/열의 번호에 따라 부호(행 번호 + 열 번호가 홀수이면 음수/짝수이면 양수)를 부여한 것이다. 행렬 $A$의 원소 $a_{i}$에 대응하는 여인수는 $C_{ij} = (-1)^{i+j} \times M_{ij}$로 정의되며, 이때 $M_{ij}$는 행렬 A에서 $i$행과 $j$열을 제외한 $(n-1)$차 정방행렬의 행렬식을 의미한..
Study Note/선형대수학
2021. 1. 13. 09:03